Hands-On Instructions for the FHI-aims Code
Contents
1 Theoretical background 1
2 A quick tour of the technical details 2
2.1 Basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Generalized eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.4 Electrostatic (Hartree) potential of the electrons . . . . . . . . . . . . . . . . . . 3 2.5 Self-consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Single atom calculation with FHI-aims — Step by step 4
3.1 Task preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 geometry.in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 control.in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 The basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Finally: The Hydrogen Atom 7
4.1 Energy and Eigenvalues for the Minimal Basis in Hartree-Fock Theory . . . 7
4.2 Changing to the Local-Density Approximation . . . . . . . . . . . . . . . . . . . 8 4.3 Converging the basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.4 Plotting the density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.5 Visualizing the radial distribution function . . . . . . . . . . . . . . . . . . . . . . 10 5 The Silicon Atom 10
To download the article click on the link below:
http://aims.pratt.duke.edu/sites/aims.pratt.duke.edu/files/Exercise_9_instructions_0.pdf
Contents
1 Theoretical background 1
2 A quick tour of the technical details 2
2.1 Basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Generalized eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.4 Electrostatic (Hartree) potential of the electrons . . . . . . . . . . . . . . . . . . 3 2.5 Self-consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Single atom calculation with FHI-aims — Step by step 4
3.1 Task preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 geometry.in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 control.in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 The basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Finally: The Hydrogen Atom 7
4.1 Energy and Eigenvalues for the Minimal Basis in Hartree-Fock Theory . . . 7
4.2 Changing to the Local-Density Approximation . . . . . . . . . . . . . . . . . . . 8 4.3 Converging the basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.4 Plotting the density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.5 Visualizing the radial distribution function . . . . . . . . . . . . . . . . . . . . . . 10 5 The Silicon Atom 10
To download the article click on the link below:
http://aims.pratt.duke.edu/sites/aims.pratt.duke.edu/files/Exercise_9_instructions_0.pdf
0 Comments